MTH 201

Multivariable calculus and differential equations Practice problems

Vectors, dot product, and cross product

1. Find the component form and length of vector $\overrightarrow{P Q}$ with the following initial point and terminal point
(a) $P(-4,1,-3)$ and $Q(-2,0,2)$
(b) $P(-1,3,1)$ and $Q(4,7,0)$
(c) $P(1,1,0)$ and $Q(1,1,1)$

Also find the vector $\overrightarrow{O R}$, where $\mathbf{0}$ is the origin and R is the midpoint of $\overrightarrow{P Q}$.
2. Find vectors $\mathbf{u}+\mathbf{v}, \mathbf{u}-\mathbf{v}$, and $\mathbf{2 u}+\mathbf{3 v}$ for the following set of vectors
(a) $\mathbf{u}=\langle 1,0,1\rangle, \mathbf{v}=\langle 1,1,1\rangle$
(b) $\mathbf{u}=\langle 3,-5,7\rangle, \mathbf{v}=\langle 5,0,9\rangle$
(c) $\mathbf{u}=\langle 0,-1,1\rangle, \mathbf{v}=\langle 1,-1,0\rangle$
3. Find the unit vector which points in the direction of
(a) $\mathbf{u}=\langle 3,-5,7\rangle$
(b) $\mathbf{u}=\langle 5,0,9\rangle$
(c) $\mathbf{u}=\langle 3,4,5\rangle$
4. Find the angle between vectors
(a) $\mathbf{u}=2 \mathbf{i}+\mathbf{j}$ and $\mathbf{v}=\mathbf{i}+2 \mathbf{j}-\mathbf{k}$
(b) $\mathbf{u}=4 \mathbf{i}-\mathbf{j}+4 \mathbf{k}$ and $\mathbf{v}=-3 \mathbf{i}-3 \mathbf{j}-4 \mathbf{k}$
(c) $\mathbf{u}=\mathbf{i}+\sqrt{2} \mathbf{j}-\sqrt{2} \mathbf{k}$ and $\mathbf{v}=-\mathbf{i}+\mathbf{j}+\mathbf{k}$
5. Find the measures of angles of the triangle $A B C$ whose vertices are
(a) $A(-1,0), B(2,1)$, and $C(1,-2)$
(b) $A(0,0), B(3,5)$, and $C(5,2)$
(c) $A(0,1), B(1,0)$, and $C(1,1)$.
6. Find vector projection of \mathbf{u} onto \mathbf{v}, where
(a) $\mathbf{u}=5 \mathbf{i}+2 \mathbf{j}$ and $\mathbf{v}=\mathbf{i}-3 \mathbf{j}$
(b) $\mathbf{u}=\mathbf{i}+\mathbf{j}+\mathbf{k}$ and $\mathbf{v}=\mathbf{i}$
(c) $\mathbf{u}=\mathbf{i}+\mathbf{j}$ and $\mathbf{v}=\mathbf{i}-2 \mathbf{j}$
7. Find unit vectors \mathbf{u}, \mathbf{v}, and \mathbf{w} in the plane such that $\mathbf{u}=\mathbf{v}+\mathbf{w}$.
8. Verify Cauchy Schwartz inequality and triangle inequality for vectors \mathbf{u} and \mathbf{v} defined in Question 6.

MTH 201 Practice problems (Continued)

9. Find the cross product of vectors \mathbf{u} and \mathbf{v}, where
(a) $\mathbf{u}=\mathbf{i}$ and $\mathbf{v}=\mathbf{j}$
(b) $\mathbf{u}=\mathbf{j}$ and $\mathbf{v}=\mathbf{k}$
(c) $\mathbf{u}=\mathbf{k}$ and $\mathbf{v}=\mathbf{i}$
(d) $\mathbf{u}=5 \mathbf{i}+2 \mathbf{j}$ and $\mathbf{v}=\mathbf{i}-3 \mathbf{j}$
(e) $\mathbf{u}=\mathbf{i}+\mathbf{j}+\mathbf{k}$ and $\mathbf{v}=\mathbf{i}$
(f) $\mathbf{u}=\mathbf{i}+\mathbf{j}$ and $\mathbf{v}=\mathbf{i}-2 \mathbf{j}$
10. Let \mathbf{u}, \mathbf{v}, and \mathbf{w} be vectors in the space. Then show that
(a) $\mathbf{u} \times \mathbf{v}=(\mathbf{u} \cdot(\mathbf{v} \times \mathbf{i})) \mathbf{i}+(\mathbf{u} \cdot(\mathbf{v} \times \mathbf{j})) \mathbf{j}+(\mathbf{u} \cdot(\mathbf{v} \times \mathbf{k})) \mathbf{k}$
(b) $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{u}=0$
(c) $\mathbf{u} \times(\mathbf{v}+\mathbf{w})=\mathbf{u} \times \mathbf{v}+\mathbf{u} \times \mathbf{w}$
(d) $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}=\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})$
(e) $\mathbf{u} \times(\mathbf{v} \times \mathbf{w})+\mathbf{v} \times(\mathbf{w} \times \mathbf{u})+\mathbf{w} \times(\mathbf{u} \times \mathbf{v})=\mathbf{0}$
(f) $|\mathbf{u} \times \mathbf{v}|^{2}=|\mathbf{u}|^{2}|\mathbf{v}|^{2}-|\mathbf{u} \cdot \mathbf{v}|^{2}$
11. Use vectors to prove that

$$
\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right) \geq(a c+b d)^{2}
$$

for any four real numbers a, b, c, and d.
12. Let \mathbf{u}, \mathbf{v}, and \mathbf{w} be non-zero vectors in the space. Use dot product and/or cross product to find
(a) a vector orthogonal to $\mathbf{u} \times \mathbf{v}$ and $\mathbf{u} \times \mathbf{w}$
(b) a vector orthogonal to $\mathbf{u}+\mathbf{v}$ and $\mathbf{u}+\mathbf{w}$
(c) a vector of length $|\mathbf{u}|$ in the direction of \mathbf{v}
(d) the area of parallelogram determined by \mathbf{u} and \mathbf{v}
(e) the volume of parallelopiped determined by \mathbf{u}, \mathbf{v}, and \mathbf{w}.
13. Using vectors find the area of triangle determined by points
(a) $P(1,-1,2), Q(2,1,3), R(-1,2,-1)$
(b) $P(1,1,1), Q(2,1,3), R(3,-1,1)$
(c) $P(1,1,1), Q(0,0,1), R(0,1,0)$

MTH 201 Practice problems (Continued)

Equation of line and plane

14. Find the parametric and vector equation of line passing through $P(1,1,1)$ and parallel to
(a) X-axis
(b) Y-axis
(c) Z-axis.
15. Find the equation of plane
(a) passing through points $(1,1,-1),(2,0,2)$, and $0,-2,1)$
(b) passing through point $(2,4,5)$ and perpendicular to the line

$$
x=5+t, y=1+3 t, z=4 t, t \in \mathbb{R}
$$

(c) passing through point $(1,4,0)$ and perpendicular to Z-axis.
(d) determined by the intersecting lines

$$
\begin{aligned}
& L 1: x=-1+t, y=2+t, z=1-t, t \in \mathbb{R} \\
& L 1: \quad x=1-4 s, y=1+2 s, z=2-2 s, s \in \mathbb{R}
\end{aligned}
$$

(e) passing through $(2,1,-1)$ and perpendicular to the line of intersection of the planes

$$
2 x+y-z=3 \text { and } x+2 y+z=2 .
$$

16. Find the angle between the planes
(a) $x+y=1$ and $2 x+y-2 z=2$.
(b) $3 x-2 y-6 z=10$ and $4 x-y+8 z=12$.
17. Find the equation of line of intersection of planes
(a) $x+y+z=1$ and $x+y=2$.
(b) $3 x-6 y-2 z=3$ and $2 x+y 2 z=2$.
18. Find the distance between
(a) the point $(2,1,-1)$ and the plane $x+2 y+2 z=-5$
(b) the point $(1,1,-5)$ and the plane $12 x+136 y+5 z=-2$
(c) the point (a, b, c) and the plane passing through $(1,0,0),(0,1,0)$, and $(0,0,1)$.
19. Show that two planes $a x+b y+c z+d_{1}=0$ and $a x+b y+c z+d_{2}=0$ are parallel, and that the distance between two such planes is

$$
\frac{\left|d_{1}-d_{2}\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}
$$

MTH 201 Practice problems (Continued)

Vector valued functions

20. Sketch the following curves
(a) $\overrightarrow{r(t)}=\langle\cos t, \sin t\rangle, 0 \leq t \leq 2 \pi$
(b) $\overrightarrow{r(t)}=\langle 2 \cos t, 3 \sin t\rangle, 0 \leq t \leq 3 \pi$
(c) $\overrightarrow{r(t)}=\langle\cos t, \sin t, 2 t\rangle, 0 \leq t \leq 2 \pi$
(d) $\overrightarrow{r(t)}=\langle t, 2 t, 3 t\rangle, 0 \leq t \leq 2$
21. Find the points of intersection of
(a) the curve $\overrightarrow{r(t)}=\left\langle t, 2 t, 5 t^{2}\right\rangle, 0 \leq t \leq 2 \pi$, and the paraboloid $z=x^{2}+y^{2}$
(b) the curve $\overrightarrow{r(t)}=\langle\cos t, \sin t, t\rangle, 0 \leq t \leq 2 \pi$, and the sphere $x^{2}+y^{2}+z^{2}=5$.
22. Find the vector valued function that represents the curve of intersection of $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ and
(a) $z=1$
(b) $y+z=2$ and (c) $z=x^{2}$.
23. Show that
(a) $\lim _{t \rightarrow t_{0}}\left(\overrightarrow{r_{1}(t)} \cdot \overrightarrow{r_{2}(t)}\right)=\lim _{t \rightarrow t_{0}} \overrightarrow{r_{1}(t)} \cdot \lim _{t \rightarrow t_{0}} \overrightarrow{r_{2}(t)}$
(b) $\lim _{t \rightarrow t_{0}}\left(\overrightarrow{r_{1}(t)} \times \overrightarrow{r_{2}(t)}\right)=\lim _{t \rightarrow t_{0}} \overrightarrow{r_{1}(t)} \times \lim _{t \rightarrow t_{0}} \overrightarrow{r_{2}(t)}$
24. Show that the function $\overrightarrow{r(t)}=\langle\cos t, \sin t,[t]\rangle$ is not continuous at integer points, where $[t]$ denotes the greatest integer part of t.
25. Let f, g, h be real functions defined over \mathbb{R}. Show that $\overrightarrow{r(t)}=\langle f(t), g(t), h(t)\rangle$ is continuous at $t=t_{0}$ if and only if f, g, and h are continuous at $t=t_{0}$.
26. Find $\overrightarrow{r^{\prime}(t)}, \overrightarrow{r^{\prime \prime}(t)}$, and $\overrightarrow{r^{\prime}(t)} \times \overrightarrow{r^{\prime \prime}(t)}$ for the following functions
(a) $\overrightarrow{r(t)}=\langle\cos t, \sin t, 2 t\rangle$
(b) $\overrightarrow{r(t)}=\left\langle\cos ^{3} t, \sin ^{3} t, e^{t}\right\rangle$
(c) $\overrightarrow{r(t)}=\left\langle t, t^{2}, t^{3}\right\rangle$
27. If $\mathbf{u}=\overrightarrow{r(t)} \cdot\left(\overrightarrow{r^{\prime}(t)} \times \overrightarrow{r^{\prime \prime}(t)}\right)$, then show that $\mathbf{u}^{\prime}=\overrightarrow{r(t)} \cdot\left(\overrightarrow{r^{\prime \prime}(t)} \times \overrightarrow{r^{\prime \prime \prime}(t)}\right)$.
28. Show that

$$
\frac{d}{d t}(\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w}))=\mathbf{u}^{\prime} \cdot(\mathbf{v} \times \mathbf{w})+\mathbf{u} \cdot\left(\mathbf{v}^{\prime} \times \mathbf{w}\right)+\mathbf{u} \cdot\left(\mathbf{v} \times \mathbf{w}^{\prime}\right)
$$

MTH 201 Practice problems (Continued)
29. If $\overrightarrow{r(t)} \neq 0$, show that

$$
\frac{d}{d t}|\overrightarrow{r(t)}|=\frac{\overrightarrow{r(t)} \cdot \overrightarrow{r^{\prime}(t)}}{|\overrightarrow{r(t)}|}
$$

30. Let $\overrightarrow{r(t)}$ be a differentiable vector valued function of constant length, i.e., $|\overrightarrow{r(t)}|=$ constant $\forall t$. Then prove that $\overrightarrow{r(t)}$ is orthogonal to $\overrightarrow{r^{\prime}(t)}$.
31. Let $\overrightarrow{r(t)}$ be a differentiable vector valued function such that $\overrightarrow{r(t)} \cdot \overrightarrow{r(t)}=0 \forall t$. Then show that $\overrightarrow{r(t)}$ is of constant length.

Curves, arc length, curvature

32. Find arc length of the curve
(a) $\overrightarrow{r(t)}=\left\langle 2 t, 3 t^{2}, 4 t^{3}\right\rangle, 0 \leq t \leq 1$
(b) $\overrightarrow{r(t)}=\left\langle t, e^{-t}, t e^{-t}\right\rangle, 1 \leq t \leq 3$
(c) $\overrightarrow{r(t)}=\langle\sin t, \cot t, \tan t\rangle, 0 \leq t \leq \pi / 4$.
33. Reparametrize the curve with respect to arc length measured from the point where $t=0$ in the direction of increasing t
(a) $\overrightarrow{r(t)}=\langle 2 t, 1-3 t, 4-5 t\rangle$
(b) $\overrightarrow{r(t)}=\left\langle e^{2 t} \cos 2 t, 2, e^{2 t} \sin 2 t\right\rangle$
(c) $\overrightarrow{r(t)}=\langle 3 \sin t, 4 \cot t, 5 t\rangle$.
34. Suppose you start moving from the point $(0,0,3)$ and move 5 units along the curve $\overrightarrow{r(t)}=\langle 3 \sin t, 4 t, 3 \cos t\rangle$ in the positive direction. Where are you now?
35. Reparametrize the curve $\overrightarrow{r(t)}=\left\langle\frac{2}{t^{2}+1}-1, \frac{2 t}{t^{2}+1}\right\rangle$ with respect to arc length measured from the point $(1,0)$ in the direction of increasing t. Express the reparametrization in its simplest form.
36. Find unit tangent vector \vec{T}, unit normal vector \vec{N}, and binormal vector \vec{B} for curves defined in Questions 32 and 33.
37. Find the curvature of $\overrightarrow{r(t)}$ at the specified point
(a) $\overrightarrow{r(t)}=\left\langle t^{2}, \log t, t \log t\right\rangle$ at $(1,0,0)$
(b) $\overrightarrow{r(t)}=\left\langle t, t^{2}, t^{3}\right\rangle$ at $(1,1,1)$
(c) $\overrightarrow{r(t)}=\langle\sin t, \cos t, \sin 5 t\rangle$ at $(1,0,0)$.

MTH 201 Practice problems (Continued)

38. Use vectors to find the curvature of the following curves at a general point
(a) $y=x^{2}$
(b) $y=\tan x$
(c) $y=x e^{x}$.
39. Find an equation of a parabola that has curvature 4 at $(0,0)$.
40. Show that the circular helix $\overrightarrow{r(t)}=\langle a \sin t, a \cos t, b t\rangle$, where $a, b>0$, has constant curvature and constant torsion.

Function of two and three variables Limit and continuity

41. Describe level curves of the following functions of two variables
(a) $f(x, y)=x+y+1$
(b) $f(x, y)=4 x^{2}+y^{2}+1$
(c) $f(x, y)=x^{2}$.
42. Describe level surfaces of the following functions of three variables
(a) $f(x, y, z)=x^{2}+y^{2}+z^{2}$
(b) $f(x, y, z)=x+2 y+3 z$
(c) $f(x, y, z)=x^{2}+z^{2}$.
43. Compute $\lim _{x \rightarrow 0}\left(\lim _{y \rightarrow 0} f(x, y)\right), \lim _{y \rightarrow 0}\left(\lim _{x \rightarrow 0} f(x, y)\right)$, and $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$, if they exist
(a) $f(x, y)=x^{2}+5 x+2 y+9$
(b) $f(x, y)=\sin x e^{y}$
(c) $f(x, y)=\frac{x^{3}+2 x^{2}+x y^{2}+2 y^{2}}{x^{2}+y^{2}}$
(d) $f(x, y)=\frac{e^{2 y}}{x+1}$
(e) $f(x, y)=\frac{x^{2} y+y^{3}}{x^{2}+2 y^{2}}$
(f) $f(x, y)=\frac{x^{2} y^{2}}{(|x|+|y|)^{3}}$
(g) $f(x, y)=\frac{x^{2}-x y}{\sqrt{x}-\sqrt{y}}$
44. Prove that there exists a $\delta>0$ such that whenever $x^{2}+y^{2} \leq \delta^{2}$, we have

$$
\left|x^{2}+y^{2}+3 x y\right|<\frac{1}{1000}
$$

45. Show that $f(x, y)=\frac{x+y}{x-y}$ is continuous at (1,2).
46. Suppose $X, Y \in \mathbb{R}^{3}$ be such that $X \neq Y$. Show that there exists a continuous function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ such that $f(X)=0, f(Y)=1$, and $0 \leq f(Z) \leq 1$ for all $Z \in \mathbb{R}^{3}$.

MTH 201 Practice problems (Continued)

Partial derivatives, directional derivatives, and differentiation

47. Compute $f_{x}, f_{y}, f_{z}, f_{x y}, f_{y z}$, and $f_{z x}$ for each of the following functions
(a) $f(x, y, z)=x^{2} y+y^{3} z$
(b) $f(x, y, z)=\cos (x y)+y^{3} \sin \left(x z^{2}\right)$
(c) $f(x, y, z)=\cos \left(x^{2} y\right)-\cos \left(x^{2}-y z\right)$
(d) $f(x, y, z)=\sqrt{1-x^{2}-y^{2}-z^{2}}$.
48. Find an equation of tangent plane to the given graph at the specified point
(a) $z=\cos x \cos y$; at $(0, \pi / 2,0)$
(b) $z=x^{2}+4 y^{2}$; at $(2,-1,8)$
(c) $z=\frac{1}{x y}$; at $(1,1,1)$.
49. Find the linear approximation of given function at the specified point
(a) $f(x, y)=e^{x}+\sin x y$; at $(1,3)$
(b) $z=x^{2}+4 y^{2}$; at $(2,1)$.
50. Verify the chain rule for
(a) $z=x y ; x=t^{2}, y=t^{3}$
(b) $z=x y ; x=t^{2}-s^{2}, y=t^{2}+s^{2}$
(c) $w=x e^{y z} ; x=e^{t}, y=t, z=\sin t$
(d) $w=f(x, y, z) ; x=r \cos \theta, y=r \sin \theta, z=z$
(e) $w=f(x, y, z) ; x=r \cos \theta \sin \phi, y=r \sin \theta \sin \phi, z=r \cos \phi$.
51. Compute the directional derivative $D_{\mathbf{u}} f\left(x_{0}, y_{0}\right)$ where
(a) $f(x, y)=x e^{x y}+y, \mathbf{u}=(\cos 2 \pi / 3, \sin 2 \pi / 3),\left(x_{0}, y_{0}\right)=(2,0)$
(b) $f(x, y)=x \cos y, \mathbf{u}=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right),\left(x_{0}, y_{0}\right)=(0,0)$
52. Let $f(x, y)=\frac{\cos x+e^{x y}}{x^{2}+y^{2}}$. Show that f is differentiable at all points $(x, y) \neq(0,0)$.
53. Let $f(x, y)=\frac{y}{|y|} \sqrt{\left(x^{2}+y^{2}\right)}$, if $y \neq 0$ and $f(x, y)=0$ if $y=0$. Show that f is continuous at $(0,0)$, it has directional derivatives in every direction at $(0,0)$, but it is not differentiable at $(0,0)$.
54. Let $f(x, y)=\frac{1}{2}(| | x|-|y||-|x|-|y|)$. Is f continuous at $(0,0)$? Which directional derivatives of f exist at $(0,0)$? Is f differentiable at $(0,0)$?
